ROTATIONAL GEOMETRY AS A TEACHING TOOL APPLYING THE WORK OF GIORGIO SCARPA

PINO TROGU - SAN FRANCISCO STATE UNIVERSITY
FACULTY RESEARCH AND CREATIVE ACTIVITIES RETREAT
INNOVATE AND CREATE
SFSU - J PAUL LEONARD LIBRARY
JANUARY 23 AND 24, 2013
 di Gementria Rototoria
[Models of Rotaional
Cemerry]
Moodes of Rotational
Geomerry]. Bologna:
Zanichelli, 1978. Cover
Zanichelli, 1978. Cover
nd sample pages: 43

Genesis of form. Motion is at the

root of all growth
Although rotational geometry is
a difficult field of mathematics available only to specialists, the physical models that apply its principles are highly useful for courses in sketching and drawing.
Students at San Francisco State have found rotational geometry to be one of the most valuable segments of the drawing course, offering such remarks as: "I feel that this project used all of the skills that we learned in class, from drawing the basic shape in orthographic/axonometric
views to the cubic modules in views to the cubic modules in
the perspective" "This project the perspective." "This project
challenged my design thinking by taking a 2D object and rendering it in a 3D environment."
I was able to teach this segment of the course thanks to the teaching and writings of the Italian scholar Giorgio Scarpa (1938-2012)

This presentation introduces his work to English-speaking specialists,
and illustrates how the subject can be made useful to design students. Giorgio Scarpa taught Descriptive Geometry at the Istituto d'Arte of Oristano and Faenza, Italy, and Theory of Perception at the Istituto superiore Industrie Artistiche
(ISIA) in Faenza His (ISIA) in Faenza. His book Modelli di Geometria Rotatoria, which was part
of a design series edited by the late Italian designer Bruno Munari, is the basis of this study. This teaching unit in drawing for design uses and applies Scarpa's principles and methods, and tests their validity through the construction of physical models built by the students. Through this process, students learn
to apply a visual grammar based on rotational movements and folding which transform two-dimensional shapes into three-dimensional solids. These solids are modules derived from the sectioning of
regular polyhedra such as the cube. ON DESIGN PRINCIPLES AND PRACTICES. LOS ANGELES, JANUARY 2I, 2012

In theory, any regular polyhedron can be used as the basis for the is used, due to its simple, intuitive symmetry.
Drafting and Sketching for Desig is a required course for all students entering the Design and Industry Department at San Francisco State is done by hand with drafting toos and free hand sketching The class overs orthographic projections, xonometric projections, and perspective. These techniques are also explored within a unit called Cube Section.
The unit begins with the simple problem: dissect a $4^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}$ cub (polyhedra), having identical surf area, volume, and shape.

The three-dimension

that will form the final cube can be connected at a later time by means of hinges. The connected modules
chains. The modules may or may n fold back into a minimum volume orientation of the hinges used. The materials used in this process are pencil, paper and tape or glue. While the students are able to improve their manual skills through the use of these materials, the alternave use Print AD and 3 printing would ariow for faster We'll call the process for the section that divides the cube into two modules the "twin" section. The process that divides the cube into "three modules will be called the "triple"" section. Text and images in from an article by the same title.

More details can be found at the URLs below. Thank you. PT

TWIN SECTION

 he left edge and ending at any point on the right edge, but avoiding "stops" the four red dots.
the four red dots.

Fig. 2 - Mirroring and rotations of the basic square.

TRIPLET SECTION

 Fig. 10 - Complete external modules.

Fig. 5 - Foldout of internal and external surfaces combined.

Fig. 11 - Folding the parts of a single module.

HINGES AND ROTATIONS

 At right is the exploded view of the six modules forming the cube.

