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The movement of rotation
in nature

The movement of rotation is found throughout the
world. The earth and the other planets rotate
around themselves and around the sun. In its
voyage through space, the solar system rotates
around the center of our Galaxy and all the other
galaxies rotate around their centers. Even inside
atoms there is something similar to the rotation
movements, of the electrons around themselves
and around the nucleous, of the protons and
neutrons in the nucleous.

The movements of rotation describe circles or
ellipses or other closed trajectories. If we overlap a
process of growth or an expansion on the rotation,
the circles become spirals. Many spiral forms can
be found in nature, from Galaxies to flowers to
shells, even inside the cells.

The sheates of fats and proteins that cover certain
nervous fibers grow rotating around the fiber and
hence assume a spiral form. Even certain chemical
reactions progress rotating and manifest
themselves with colored waves, in the form of
circles and spirals

If we overlap a translation in space to the rotation
movement in a plane, the resulting figure is a
cylindric helix. Helicoidal forms are very common in
the living world.

The deoxyribonucleic acid molecula, a fundamental
substance for the life on earth, has a structure
formed by two entwined helixes, wrapped around a
common axis. The helix is also one of the principal
structures of the proteins, another class of
substances indispensable for life: a helix-shaped
protein, the keratin is the prime constituent of wool,
hair; the myosin, a protein of the muscles, is
formed by pairs of entwined helixes; a triple helix is
the basic structure of collagen, which forms
tendons, the strongest biological fibers. In certain
viruses, the proteins arrange themselves in a helix
manner, constructing an empty cylinder, within
which we find the helix of the nucleic acid. In the
cells of the Spirogyra algae we notice a long green
stripe going around in a helix: these are the
cloroplasts, where the photosyntetic activity takes
place. Many organisms move following helicoidal

trajectories. Euglena g;acilis, a micro-organism that
moves pushed up by a flagellum, moves with a
screwing movement around itself, describing a helix
on a cone; the flagellum itself is made of helicoidal
proteins and moves almost like a helix.

Digging animals, like moles or certain earth worms,

proceed in the digging with rotatory motions, like a
drill or a bottle opener.

Certain birds that nest in bamboo swamp areas,
make a series of rotatory movements with their
whole bodies while building the nest, after landing
on the center of a bunch of grass fragments and
stems, on a biforked branch. Sometimes these
birds start their rotatory movements even before
having picked a single grass stem, to prove that
they are taking possession of the future site of their
nest. Today, high speed photography allows a very
precise analysis of the mechanism of the flight of
insects. The rotatory motion plays a very important
part in it. Their wings have some function of
rotatory helixes. Often, when insects are attracted
by the light of a lamp, they get closer to it
describing helicoidal trajectories. Bees use a
circular dance to communicate information on the
nature and distance of a food source to exploit. We
can go on: vultures reach higher altitudes by flying
along helixes within rising columns of warm air,
their trajectories are the shortest way up, given the
incline; the torch fish uses a luminous organ to
communicate, get food, defend himself, the organ
immediately rotates into a black pocket the moment
the animal decides it is time to ‘turn off the lights’;
and...while | am writing these lines, my fingers,my
hand, my arm, they all move due to a combination
of rotatory motions by different bone levers around
their fulcrum. )

Many examples in many fields of human activity
demonstrate that rotatory motion is very common
and very useful. Therefore it is very important to
measure it. To rotate means to move of a certain
angle in a certain time. Hence rotation
measurements bring us to angle measurements.
The angle that corresponds to a complete rotation
around itself is called round angle. As an ancient
tradition, the angle of measurement of an angle is
the 360th part of a round angle, which is called
degree. Rotations also multiple of 360 degrees,
around points and symmetry axes, on the plane
and in three-dimensional space, constitute one of
the fundamental components of the figures and
models illustrated in this book.
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The spiral galaxy M81 in the Great Bear constellation.




Reticular structures in rotation in a muscular fiber.
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Tranfer flight trajectory of a vulture.

Maple tree seeds.
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Model of DNA molecula.
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BEGINNING TO PROJECT
COMPLEMENTARY MODULES

in nature, everything seems regulated by various
degrees of structural and organizing complexity. A
snow crystal, the parfume of a flower, are
determined by certain properties of the molecular
structure of the substance of which they are made.
In the following examples regarding our
investigation, the sectioning and recompositioning
game of the two basic units refer to, as a guide on
the plane and in space, the lines and nodes of
triangular, square, tetrahedral and cubic reticula.
One of the purposes of this study is to identify in
which way and method or logical criteria, parts
derived from the discomposition can be recombined
on the plane to form configurations in which their
three-dimensional fold-outs originate repeatable
and invariable modules, and how to proceed in their
organization and spatial coordination. For this
purpose a reference point is given by the five Plato
polyhedra solids, the first and simplest group of the
vast family of polyhedra.

A connection between plane and three-dimensional
configurations can be made through the study of
the square and the equilateral triangle. Each of
these geometric units can be discomposed in a
limited number of parts. The variety of the
discompositions is, on the contrary, relatively
infinite. We find them at the beginning of a process
of formal and coherent tranformations, which
represent the object of this study. The simplest and
most elementary subdivision of a plane surface into
geometric modules of the same type is given by
configurations of equilateral triangles and squares.
Three-dimensional schema based on these two
figures seem to frequently reflect the spatial
arrangement of the particles that give structure to
matter.
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The two basic forms.
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The two spatial reticula.
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The five Plato polyedrons.
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The plane fold-out of the hexahedron and the
octahedron.



The plane fold-out of the icosahedron and the
dodecahedron.
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~ THE USE OF RETICULA

We will begin by examining some bi-dimensional
reticula, their structure and the organization of form
on them.

With families of squares of different sizes we can
more or less densely populate a given plane
surface. Starting with a square of given dimensions
in which we will divide the sides in equal parts by
tracing parallel lines to them, perpendicular

between themselves, starting on the division points.

For example, dividing each side of an 8-cm square
in progressively two, four, eight parts, we obtain 4,
16, 64 smaller squares (submuitiples) in which the
sides respectively measure 4, 2, 1 cm. We also
obtain reticula which become more and more
dense.

[n the same way we will construct the equilateral
triangle reticulum, dividing the chosen equilateral
triangle in half. Connecting the median points with
straight lines that divide the basic equilateral
triangle in four submultiple equilateral triangles,
until defining the modular structure according to the
desired degree of refinement.
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The lines which constitute the reticulum cross each
other at points and nodes that are all of 90 degrees
in a square reticulum and all of 60 degrees in a
equilateral triangle reticulum. The growth of the
families of square and triangular submultiples
proceeds with the same numeric increments, 4, 16,
64... and so on.

These regular configurations that cover the entire
square or equilateral triangle plane are the simplest
and most elementary modulated structurings, but
obviously not the only structures capable of formally
characterizing, through points, lines and regions,
the surface of the two basic figures. Other
examples of structures are created by combinations
of orthogonal and diagonal lines for the square, and
by straight lines connecting the vertexes with the
median points of the sides and lines parallel to the
sides for the equilateral triangle.

Let us stop here for a moment to see how we can
use these structures, keeping in mind that the
choice of a reticulum has to relate to the type of
experiment that we want to conduct.

Once we have traced a reticulum of of
perpendicular and diagonal lines in the square, we

- will section it in the simplest possible way: we will



divide it in two parts, we will do the same with the Vertexes and perimeter of a form must coincide
equilateral triangle. For example, like in the figures with the nodes and the iines of the reticulum.
shown below. We will now worry to define in which way to move
those forms on the structured plane. Then to see
what possibilities of combinations exist between
them when their positions change on the modulated
surface. A symmetry operation that can be applied,
‘ : - among the others and without modifing that form, is
] rotation.

We will then put the two figures derived from the
section of the square in a structure constituted of
square modules, and the forms derivated from the
section of the equilateral triangle, in a structure
constituted of equilateral triangles. The forms will
be cut out of paper board and we will put them on : : : :
the modulated surface. The sides of the figures SRR ORI U Lo ¢
must be the same or a muitiple of the basic module

that forms the structure.
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We will examine only the rotation movements of the
forms included in in the following cases:

1. a form can turn around a center of rotation within
the form itself or can be located on the vertexes or
the sides that constitute its perimeter;

N

2 ga form car rotate one or more times around one
or more centers of rotation, clockwise or cognter-
clockwise, describing angles which are muitiple of

360°;

3. a form can be rotated around a center of rotation
describing various times a same angle muitiple of
360°;

4. we can rotate two or more forms simultaneously
around the same center of rotation:

5. a form a can be rotated around a form b and
viceversa, when both have a common center of
rotation;

20

6. we can add a form sitting in a determined
position on the plane with the area to the same
rotated form. N

The forms combined in rotatory plane symmetry
always result to be in contact with each other in
their final configurations, and never overlapped.
The operations of grouping and organization of the
forms help understand how they combine
themselves on the modulated surface, not
according to a casual relationship, but in such ways
that define their reciprocal interdependence, in
relation to the construction of modular plane fold-
outs, which, folded in third dimension, will originate
three-dimensional modules, fractions of the global

* volume of polyhedrons.

After having traced on the square a reticulum
constituted of perpendicular and parallel lines,
having chosen a sectioning itinerary among the
many which are possible, having sectioned the
square in two parts; let us look now at the
operations to be done in accordance to an ordered
logical sequence: rotate b clockwise of 90°, pivot in
1 (passing over form a ). Rotate the resulting figure
of 180° about 2. Pivot in 3, rotate two times the
newly composed group of four parts.



The entire hexahedral plane surface (external fold-
out) is defined by 4 rotations around 3 centers of

NN symmetry, and is articglated in 3 distinct fold-out
7NN plane groups, each being constituted by two
NN/ . .
NN squares (4 parts). The first rotation tranforms the

bisected square, which has a specular symmetry, in
a new figure that is no longer symmetric. Starting
from this sequence, all the following ones show
operations of cyclic rotatory symmetry.

K N K
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By changing the order of the rotations around the
same symmetry centers, the final result is the
same, while the intermediate formal conbinations of

a + b do change.

1st example: center in 2, rotate a + b of 180°, then
rotate the two triangles b of 90°;

2nd example: rotate ab + ab of 90° two times with
center in 1 and all the triangles b of 90° about the
vertexes of each square (clockwise rotations).
page 23
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We can obtain a new fold-out with the rotation of b
clockwise around 1 and of a + b around 2,

then, two counter clockwise rotations of 90° with
center in 3

K
VN
K
a
v

a3

define the hexahedric configuration of three distindt
fold-outs. '

a different combination of a + b, similar to the
previous one, originate the four-part group (fold-out)
if we rotate the triangles b of 90°.

VL
o
o adil

From this section of the square derive four different
hexahedric fold-outs, of which two can be
determined through an inversion of the rotatory
movement, or by refiection of the plane of
symmetry.



Overview example with eight configurations in fold-
out progression, laid out in two sequences, one to

the right and one to the left.

<
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Another example similar to the previous page.
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PLANES AND DIRECTRICIES OF
THE CUBIC SPACE

. A solid’s surface can be considered formed by
plane figures (the equilateral triangle as face of the
tetrahedron, the square as face of the cube, etc.) in
the same way that its inside can be seen as
constituted by plane figures resulted from sections.
We will begin by exploring the cube, starting with a
section that will devide it in two rectangular
parallelepipeds of equivalent area and volume. This
section is a square identical to the six faces that
form the cubic surface. We can divide the cube in
this way only three times. The three sectioning
square planes, perpendicular to each other, are
arranged in three different spatial orientation, like
the faces of the cube. The plane that devides the
cube into two prisms with a triangular base is a
rectangle whose sides are the diagonal of two
faces and two edges of the cube. We can visualize
six of these planes inside the cube, each with a
different spatial orientation.

28

If we intersect one of the three square planes with
each one of the other two in the way shown in the
example, we can see that the possible intersections
are three: they happen to be along three lines that
constitute the connecting straight lines between the .
central points of the the six faces of the
hexahedron.



Ty

Instead, if we combine the six rectangular planes
and visualize alt the positions that each one can
take in regards to each other, we find that the
possible intersections are fifteen: only three times a
plane intersects another plane along the three
straight lines connecting the centers of the faces of
the cube; and three times can a plane intersect
another one along each of the four diagonals that
unite in pairs the opposite apexes of the cube.
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The intersections between square and rectangular ST “7
planes are in all eighteen: a square plane and 7
arectangular plane intersect four times along each /

ternary directrix, and only once along an o
intersection line equal in lenght to the diagonal of a
face of the cube. Since the rectangular plane can
assume six different positions within the cube, the :
square plane intersects it six times, assuming two : /
times the same position in the sense of each /
ternary direction.

As we see in these examples, the intersection lines
of the planes are at the same time connecting
straight lines between the six centers of the faces,
the eight apexes, the twelve edges of the cube. ’

Moreover, they can assume the function of lines of e ; -
the bi-dimensional structure of the square (internal : /
surface plane), and of the rectangle, internal plane
of the cube.

[n this way we also establish a precise relationship
of geometric correspondence between the two
strucural grids whose refinement can be more or
less accentuated as shown above: to a grid with
lines and points more and more dense belonging to
a surface plane-figure (square) corrispond grids
with the same number of lines and points of an
inside plane-figure (rectangle). The relations that
unite the inner planes with the squares (or parts of
them) that constitute the surface of the cube are
infinite.
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Let's see now how we can connect the internal
planes with the hexahedral surface fold-outs:

1. join two1Y2 rectangles to one of the external
hexahedric surface fold-outs, such that half of their
longer side results adjacent to one of the two free
sides of triangle b.

2. rotate the rectangular triangles C-D-E of 70°
around points 1.

32




This configuration, articulated in 14 parts (four
derived from the square module and 10 from the
17V2 module), is one of the three hexahedral
surface fold-outs capable, if folded, of exactly
occupying a third of the entire cubic cell.
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A different conbination of the modules originates a
varied articulation of the same fold-out, third part of
a cube, when we connect the 1°V2 rectangle to ab,
following up with a rotation of 70° around point 1 of
rectangle C-D-E, and another of 180° around point
2.
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In this case, by repeating the known joining
operations, with a clockwise rotation of 70° of the
E-F-G triangles, center in 1, we obtain a new fold-
out which surface will delimit again a third of the
cube’s volume, this time in a different way from the
previous ones.

35



ROTATION AND FOLDINGS OF
THE FOLD-OUTS

The connections of the external surface fold-outs
with the internal planes of the hexahedron
determine, as we saw before, new configurations,
new fold-outs, and by folding them, therefore by
going from plane to space, we obtain three-
dimensional modules. The transition from two
dimensions to three dimensions depends on:

~ 1. making the lines that dimension the fold-out
surfaces assume the function of rotatory axes;

36

2. outlining folding sequences along these linear
configurations, that constitute determined paths;

3. the choice of the more logic and economic paths;

4. rotating (folding) according to determined angles,
parts of the model around these lines (axes);

5. regulating the number and type of operations, in
regards to schema of formal organization.



Examples:

folding order indicated on the internal lines by the
numbers 1-13, in relation to the definition of the
module;

e
S5

3R m%%‘\}i %’\::%?%@%“ o
s e
S

cubic cell to which we will refer the folding
sequences of the model.
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The linear path around which to rotate the planes of 3. internal half diagonal
the model is the following:

- »‘

1. edge of the cube 4. internal half axis

2. half diagonal of a face ) 5. internal half diagonal

38



6. half internal axis 9. half internal diagonal

$ 2 &H

7. edge 10. half internal axis

BT 4

/ ‘ﬁ‘

8. half diagonal of a side 1. half internal diagonal

»
4» }
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13. edge
The rotations are of 90°.



The same foid-out can be variously folded.

What is a helix? it's the spontaneous curve drawn
in the air by the seeds of the linden tree when they
fall off the plant;

or by the earth, that, rotating in space around the
Sun, is moving on the advancing axis of the Sun
towards the star Vega;

for the painter Paul Klee, it is “...the most pure form
of movement we can think of".

In geometry, in its simplest form. is the cylindrical
unfolding of the diagonal of a rectangle.

41
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Let's consider the planes as articulated in two
groupings (1-7 and 7-13, see previous pages)
about the center of rotation 7; their overali shape is
similar to an s which becomes more visible if we
connect the points from 1 to 13 with a curv, or by
drawing two regions that delimit the dotted tracing,
thus accentuating the two-arm cyclic course of the
folding.

The composition of the folding movements with
which we transport the planes into space, rotating
them about the axes 1-13, results in a trajectory
which is shaped like a helix.

With this spatial map that unifies the sequence of
the movements, we define the folding in three-
dimensional space.

The representation of maps of the folding
movements has as a goal the control of the entire

" process, towards its future semplification.
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Other examples: the square is sectioned in two
parts of different areas and follows the half-
diagonal, half axis path. A series of fold-outs (about
ten) results from the combinations by rotation of
these two units. We can see two of the examples in
the figure shown above.
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Each section of the square, as well as any path
that we can follow on the reticulum, has
dimensional correspondences with the internal
planes of the cube;

in this case square and rectangular semi-planes will
be combined together.

The resulting figure contains four semi-diagonals
which connect at the middle point of the axis now
common to the two semi-planes;

-
g

we combine now two of these rectangles to the
external fold-out,

and, with rotations of 70° of the A—B—1 triangles,
center in 1, we have now defined the cyclic
configuration..
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THE PAIR OF MODULES

To discompose a figure in two parts is also a way
to originate a pair. All the fold-out configurations
realized until now are nothing else but a continuosly
varied combination of pairs.

Per se, each unity has its own type of symmetry
and when we ask ourselves with respect to what a
figure is symmetric, the known references are point,
line and plane. If we examine the previous sections
of the square we see that the components of the
pair are not symmetrical with respect to one
another, but we can give a specular comrade to
each of them through a reflection operation. Not all
the modules though, are specularly symmetrical,
that is identical to their own image reflected in a
mirror. Many of them bear the same relationship
that exists between right hand and left hand. One is
the specular image of the other but neither can be
overlapped onto the other.

In the facing page is a square which is sectioned in
two parts along the diagonal. The two rectangular
isosceles triangles forming the pair are one the
specular image of the other but each one cannot be
overlapped (each one of the two does not entirely
occupy the geometric space of the other). By
rotating only one of the two with the analogous
process previously used, we obtain again three
hexahedral fold-outs; { ) if we instead double
both triangles with rotations of 180° around centers
1 and 2, we form two new pairs, each of them
being one sixth of the external surface of the cube.
With two successive rotations of 90° of the two
pairs joined together we determine the six-piece
configuration. Every point of the square to the left
of L, has its symmetrical correspondent in the
square to the right. This happens when a reflection
operation is executed. The two squares can be
overlapped. Though, in this case the figures are
specular but become asymmetrical if we overlap
them. We can say that we have a left triangle and a
right triangle that are enantiomorphic.
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A few examples of division of the square in two
parts. They are obtained by following the reticulum
along orthogonal and diagonal paths. Also mixed
paths of orthogonal and diagonals with respect to
the sides of the total figure were used.

48






SEQUENCES OF ROTATORY
SYMMETRY DERIVED FROM
TRIANGULAR RETICULA

1. Trace the three median lines on the equilateral
triangle by passing in the center (30°-60°-90°); use
the alternate reticula of median lines and straight
lines parallel to the sides, and reticula with a
modular structure in relation to the sectioning

>
N
')V

o
itineraries that we want to follow; ‘é‘%\ A%X%A
AalsA. AVAVAYA

2. section the equilateral triangle in two parts:

rotate part a of 60° {clockwise or) counter clockwise
with center in apex 1;

rotate a-b of 180° around center 2 (intersection of
median line with side);

rotate 60° the thus obtained four-part group, once
with center in 3 (common apex of a-b).

The tetrahedral plane surface (external fold-out) is
defined, on the reticula, by 3 rotations around 3
symmetry centers; the plane fold-out groups are 2,
each constituted of 2 equilateral triangles. The
bisected equilateral triangle, having specular
symmetry, is transformed, because of rotation, into
a variety of configurations having cyclic symmetry.
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) . } We can also use the following scheme: the triangle
V‘w. ab is rotated 60° clockwise and counter clockwise
around 1, and 120° with center in 2; with three 60°
L\ :

rotations of the three external triangles joined to the
central triangle, and with center in its apexes, we
obtain a triskelion-like form. Three fold-out groups
are obtained from this form if we follow the three
branches along three directricies of the reticulum.
Each of these groups is constituted by four
equilateral triangles.
By operating on the verticies of these three forms
with rotations which are multiple of 360° (60°-120°-
180°-240°-300°) we can find the formal conbination
of two groups of tetrahedral fold-outs; these can be
discomposed and recomposed in various numerous
configurations of which we can here see a few
examples.
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INTERNAL PLANES OF THE
TETRAHEDRAL SPACE

The tetrahedron has four verticies, six edges, four
faces and no diagonals. In the regular tetrahedron
ABCD the height D-E falls on the center of gravity
of the equilateral triangle ABC. The straight line AF
passing on E is a median. The isosceles triangle
AFD contains two directricies of the internal space
of the tetrahedron which are constituted by twice
the height (DE,AG) and by a median that unites two
opposite edges (FH). The triangular planes are six
(isosceles triangle) of which the heights and
medians intersect in the center of the tetrahedron
{orthocenter of the planes).

52

Contruct the equilateral triangle ABC and trace the
median heights,

C

trace a perpendicular to the height MC, its origin
being O,

with center in M, median point of the side, and with
the compass aperture MC, trace the arch CV; the
points MCV are the verticies of the isosceles
triangle, and the segment VO is the height of the
tetrahedron.




T \ A
BV‘:‘(A )
i ‘
The line that connects point V with the center O of

the equilateral triangle, is the height of the
tetrahedron contructed on the same triangle.

These planes are variously connectable to the
groups of external surface in conbinations that tend
to accentuate the cyclic-type formal aspect of the
planes themselves:

1. unite two isosceles triangles containing the
internal spacial directricies of the tetrahedron to one
of the two external surface fold-outs, in such a way
that there be a dimensional correspondence
between the parts that we want to connect;

2. rotate two rectangular triangles 1-A-B 110°
counter clockwise around center 1;

3. rotate the such obtained pairs 145° around the
same centers. Thus we determin a plane group of
total surface, which corresponds to half a
tetrahedron.

N
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ROTATION-FOLDINGS OF THE
TETRAHEDRAL FOLD-OUTS

Preordered folding sequences of the new total-
surface fold-out follow the composition of the
internal and external planes of the tetrahedral body.

Tetrahedral reference cell.

By folding half of the fold-out from 1 to 5 we
describe a helicoidal curve in space; through a
rotatory movement of the series 6-10 we originate a
second curve similar to the previous one; with the
11th fold, by connecting the ends we close up the
fold-out.

54



Progressive addition of the plane sectors, each one
referring to its rotation axis; the angles of rotation
are in the order of 120°, 90°, 60°, 60°, 60°, 120°,
90°, 60°, 60°, 60°, 120°.
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By connecting together the four median points on
the four edges of the tetrahedron, we obtain a
square, structural internal plane that divides the
polyhedron in two equal volumes.

Various intersections can occur with the other
triangular plane that also cuts the tetrahedron in
two equal parts.

From intersections of the internal planes, which are
always related to the form of the external-surface
fold-outs, derives this discomposition in triangular
and squares submultiples that complete the plane
cyclic form of half tetrahedron.
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Modular reticulum of the equilateral triangle. All
lines of division in two parts of the triangle shown in
the facing page are traced following this reticutum.
The examples can be numerous.



Q€L LS
4 €4 <4C
4444444
L4L4L4 4




The study of the complementary relations of the
sections of the equilateral triangle and of the
square, the multiplication of the coupling of the
forms, regulated by rotatory symmetry, bring us to
the modular fold-out. In the same way that a
distinct fold-out, for example a plane tetrahedral
fold-out, can be spatially coordinated by referring to

60

the tetrahedric cell, the quantitative regulation of a
three-dimensional tetrahedral model will depend on
the same reference. All this requires being precise
about the number of modules to build, the type or
‘species’ to which they belong and the function of
what we will make choices on.
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THE CHAINS OF PAIRS OF
SPECULAR MODULES

1. The tetrahedron, the cube..., all polyhedra, can
be considered as one of the numerous three-
dimensional configurations resulting from the folding
of flexible chains of modules.

2. The chains are costituted by pairs of modules in
which one component is the mirror image of the
other.

3. To build a chain it is necessary that a single unit
(module) be tied by a hinge or joint to the near
specular unit in such a way that it forms a pair, and
that the pair thus constituted be connected to the
preceding and following pairs.

4. The costruction of a pair is possible when we
know the form, the number of pairs or modules,
and the type of organization that we intend to
applay to them.

5. The line-up sequences assume a rectilinear path
(or a zig-zag one); in them we can find pairs of
uniformed size and similar between them (modules
and submodules).

6. The chains are classifiable on the basis of

rhythmic succession of the number and type of the
pairs, or of the number and type of modules, of the
spatial order given to the latter, and of the number

" and spatial position of the joints.
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An example:
a) hexahedral modular pair “A”; M
A
1 ‘ 2 ‘ 3
b) rhythmic sequence of pairs and modules: \/MM
{ . . . , ; .4. 5 . .
c) left specular unit “A-1” and right specular unit \ ﬂ
“A-27;
Al A2
d) specular units “A-1", “A-2"; vvv
2
1 3
|
/ /

e) joints and their spatial position.
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In relation to the variability of the spatial disposition
of the joints and modules, we can build:

AR e ey

A) chains with an open boundary;
B) chains with a closed boundary;

1) the bundie chain,
2) the branched chain,
belong to A;

1) the ring chain,
belongs to B.

‘These are the three simplest and fundamental

figures of articulated combinations of modules.
They represent, in a schematic way, the top view of
the chains on the plane reticula, and the linear and
nodal structure of the modules in the three-
dimensional reticula.
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THE BUNDLE CHAIN

In the bundle chain the union of the pairs originates

rectilinear sequences or zig-zag ones. The bundie

chain must be constituted by a combination of at
least two linear sequences of modules. It resuits
from the joining of the modules through the use of
flexible connections, following only one extension of
lines or succession of parallel points, belonging to
the planar and three-dimensional reticula. The
directricies (horizontal, vertical, diagonal) along
which we connect the modules following this
scheme are three. The joining sides of the
modules, disposed on two dimensions of the three-
dimensional space, which are necessary for the
contruction of a bundle chain are also three. The
variety of combination, and the rotation of the
modules, allow this chain to move laterally with
respect to its major axis and also to inwardly fold
itself. The flexibility of a bundle, branched, or ring
chain depends on the form, the number of pairs,
the position and regularity of space-dimensional
succession of the joints. The degree of flexibility of
a bundle chain is variable along its reticular
structure.

THE BRANCHED CHAIN

In the branched chain the pairs are disposed in
rectilinear or in zig-zag sequences, in bundle
conbinations, or mixed, compounds of rows and
bundles. The linear distribution of the modules must
be made following the directricies of the reticula in
one of the above indicated way. The branched
chain results from the addition of segments which
bifurcate. The terminal modules of each segment
constitute a flexible node with varied angulation
with respect to the axes, upon which, beginning
with a number of two, other chain segments are
attached.

The joining sides of the modules necessary to
contruct a branched chain are four, disposed (as for
the bundle chain) in two spatial dimensions. The
branched chain is variously foldable. The degree of
flexibility depends on the structure of the branched
segments, the way in which they are connected to
each other, the variety of rotation of the modules.

THE RING CHAIN

It is composed of pairs of modules joined in
theories, linear segments, whose extremes must be
united to form a ‘'ring’. The joining sides of the
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modules, indispensable to construct a ring chain
are two, disposed in two dimensions. The flexibility
of this chain is a function of the form and the
number of pairs, hence of the regular repetition of
the bi-dimensional rhythm of the joints. The
combination by rotation of the modules generates a
noticeable variety of geometric figures. Foldings of
360° of the whole chain are possible, determined by

pairs of rotatory movements. The planar }
configurations on the reticula of the modules that

constitute a closed chain are innumerable, always

assuming polygonal forms with a tendency to the

circle.

The simplest closed chain we can construct has on

!
|
|
i
|

the plane the shape of an equilateral triangle.



CONSTRUCTION OF A CHAIN

A practical way to realize a hinge consists in joining
the modules together with a little piece of scotch
tape.

Coupling.

By connecting together six pairs (twelve modules)
we contruct a chain.

Let's now dispose the modules on a line, following
the montage scheme that indicates the spatial
position of the hinges.

Connecting the first and last of the modules the
chain will spontaneously dispose itself in the
simplest obtainable form of closed chain: the closed
chain with a triangular configuration.
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By applying, at the same time, a light pressure on
the points indicated by the arrows,

the chain will assume a cubic form.
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A spontaneous chain disposition.
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Graphic scheme, seen in top-view, of the joining
positions of 16 modules that form, as shown in the
photograph of the model, a branched chain,
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Electronic microscope photograph of a circular DNA
molecule.
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Triangular, square, hexagonal chain, seen in ‘
horizontal projection.

Graphic schema of branched chains. The dots
represent the joints.
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The modules that compose these two triangular
configurations, apparently connected together, form
in reality a single chain, transformable in many
other shapes.
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Rotations of 360° of a tetrahedral chain.
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Rotations of hexahedral chains.







.

Other rotations of hexahedral chains.
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Examples of chains constituted by specular
modules and sub-modules. o
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ANGLES OF ROTATION AROUND
THE JOINING AXES

We know that the chains are flexible, and that this
flexibility depends primarily on a hinge or bridge
that unites two modules into a pair, allowing them
to rotate. The repetition of a joint in only one
dimension originates an elementary rhythm. Two
modules moving one with respect to the other
describe a pair of rotations in space. The mono-
dimensional repetition of these pairs constitutes an
elementary rhythm of rotation. The order, but also a
certain disorder, which characterize the
transformable chains, is expressed by the
combinations of the rhythms of the connections and
by the rotation of the modules in different
dimensions in space.

Some examples:

cube constituted by six modules;

three pairs, each constituted by two modular units
one specular image of the other, hinged together.

The components of a pair can rotate of 90° and
180° about the flexible connections (these angles
refer to the horizontal plane); the rotations are four,
two of 90° and two of 180°; the maximum angle of
rotation is 270°: a module can rotate about the
other clockwise and counter clockwise of 270°. All
pairs describe the same angles of rotation; the
hinges represent the axes of rotation of the whole
chain; the rotations oppose each other rhythmically
in two dimensions.
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Tetrahedron composed by eight modules;

three pairs, each constituted by two modules, one
specular image of the other, joined by a flexible
connection;

the modular units can rotate about each other with 5o (
angles of 180° and 1107,
the rotations alternate according to a binary rhythm;

e
the maximum angle of rotation is 290°. “
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The connections are visualizable in the two
dimensions of the dihedal.

Ny
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In this case the modules are 12, the pairs are six;
the chain is foldable into a form that does not '
occupy the entire cubic cell;

the rotations are of 90°.
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Rotations of 180°.

90°

The maximum angle of rotation is 270°; -
180°

the hinges are in two dimensions.
2

The rhythm is binary, composed of alternate
rotations in two spatial dimensions.
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Ring-form chain consisting of 48 specutar modules.
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STRUCTURING ITINERARY

A module can be constructed in relation to the
companion with which it forms the pair. A three-
dimensional elementary module consists of two
pairs of complementary planes. Two three-
dimensional modules form a pair when, being
connected together, they adapt to each other; and
when the pair of planes which constitute them
come into contact following a rotation movement.
Spatially, they correspond to each other in a
rigorously defined way. We will depart from this
elementary condition of correspondence to
investigate the relationship of interaction between
the modules forming a chain. We will study the
interaction mechanisms of the pairs of specular
modules as amplification of the mechanism of plane
and spatial geometric correspondences of the given
initial pair. We will be able, with diagrams and
three-dimensional models, to visualize these
relationships in the form of structuring itineraries,
which are functional to the variation of forms of the
chains, and to the comprehension of the variations.

Following this path, it is possible to take 24 modular
pairs (48 specular modules) articulated in a ring
chain, and have them assume the cubic form. With
48 specular modules, measuring5 x 5 x 5
centimeters, we will be able to construct, for
example, a chain 2.40 meters long, transformable
into a cube occupying a space of 10 x 10 x 10
centimeters. The passage from the ring form to the
cubic form takes place through rotations which are
at times helicoidal progressions, of the modular
pairs.
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The cubic form is the minumum space occupied by
the chain of specular modules seen in the previous
pages.

SPATIAL ORDERINGS OF
MODULES

A complex structure is the result of combinations of
simple structures. We form a pair with two single
modules. A chain derives from a combination of a
series of pairs of modules. A chain constituted by
pairs of modules can originate numerous formal
variations, which become more complex if we
connect two chains together. With a series of
chains connected together in a broader cooperative
system we will form spatial orderings of modular
chains, etc. This process of complementary
connections can continue in an indefinite way.
Different levels of modular coordination and
articulation are thus formed. The operator must
analyze these different variations of structure, and
modify, through the selection and the diversification,
the components of the combinatory game, in order
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to make it always more appropriate to the function
which it has to serve. From the analysis of a
determined series of conbinations of modules,
structured in complex configurations, we often gain
useful indications about the way to approach further
work hypotheses. It is the system of logic
correlations through which we learn to mount and
dismount each single component of a determined
population of modules ordered in a cooperative
system, to supply many useful elements of
reference to research and experiment new
connections. In the chains articulated in spatial
cooperative systems, we find that various degrees
of “order” and “disorder” are generated by the
interaction of the modules following a direct action
of some force upon them. To allow the folding of
the modules one over the other we will use
electromechanical, electronic, electromagnetic,
thermal, hydraulic force, etc, or our manual
interventions. The variations of form of the chains
are determined by the rotation of the modules.

The modules can rotate:

1. following itineraries of which we know the
complete map, finalized to the obtainment of a
precise formal result;

2. along unknown structuring paths.

In either case, it will emerge from the modules, in a
game of continuous variations, all the forms that the
system in which they are coordinated can express.

Manual intervention on an articulated model does
not present particular problems when the number of
the modules that constitute it is small. The operator
can instead have many uncertainties in
manipulating a model made of many pieces
because of the even radical change that, in
comparison to the simpler model, occurs in the
system of cooperation of the units that form the
articulated structure. The study of the manipulation
of the more complex models becomes then
necessary, to learn to know the more functional
ways of distributing the energy of the manual
intervention along the articulated structure. The
contructive modalities that allow the realization of
an articulated model are based on a concept of
feed-back. In that sense, all the elements that
constitute it, from the numbers of modules and
hinges to their spatial organization, from the



structuring circuits to the angles of rotation, to the
modular dynamismes, etc. contribute to characterize
it in a way which is partly or fully unpredictable.
With analog procedures to those illustrated so far
and others to research and study, with a better
knowledge of the pieces that form this game of
complementary joints, we can try to articulate and
differenciate, always refining it, the formal process
that leads to the construction of transformable
models.

An experiment which is currently under way, whose
goal is the construction of tranformabile fabrics,
regards in the order:

1. The study of the more appropriate materials for
the construction of a relevant number of modular
units and their relative connections.

2. The study of electronic reticula spatially layed-out
in a binary order, with which we can magnetize the
modules. All the tranformable models constructed
so far present in fact the fundamental characteristic
of having the connections (hinges) in two
dimensions in space.

3. The study of the interactions of the modules,
through mathematical models, to be given to the
computer, in such a way that it will be possible to
rapidly evaluate various solutions and thus choose
those that better adapt to the purpose.

4. The study of diagrams to illustrate the order of
each rotation of modutar unit so that the whole set
of determined series of rotations, thus precise
combinations of modules, will result perceptible as
shrinkings, stretchings, wrinklings, vibrations, etc.
In that sense, the electronic paths of the reticula of
the module connections, contribute to structure, in a
given model, forms designated by chosen linguistic
terms.

enantiomorphism

specular pair

A

symmetry

5. The study of how to intervene, through the use
of electronic remote controls, on the articulated
models.

To enable the viewer to percept the effects of a
modular interaction in a way corresponding to the
linguistic terms that designate it, the dimensions of
the modules that constitute a tranformable fabric
will have to be very small. The miniaturization of
the modules will have then to be studied as a
function of the relationship viewer-object.

n the same way that the construction of a three-
dimensional module depends on a precise
geometric definition of its fold-out, similarly, also its
quantitative organization in space is relative to the
ordinatory principles that will give sense to the
number of modules. To construct spatial orderings
of moduies, we will have to know through which
passages we will determine their organization.
This sequencial determination must be very
precise: we can visualize it through branched
diagrams that begin with a type of module and end
with the basic type of obtainable combinations
(bundles, branchings, rings). The tranformable
modular systems themselves, variously combined
together according to their organizing schema, will
originate more complex spatial orderings. At each
stage of each branched scheme, choices must be
made regarding the production of modules and their
combinations along determined paths. A spatial
ordering is to be considered as the combination of
a finite number of modules. The type of
combination is expressible through an ordered
succession of modules. In the same way, branched
schema will regard the spatial disposition of the
connections (hinges) and their quantitative
distribution.

An exarﬁple follows.

right unit
cbmbining sequence of the pairs

left unit

right unit

combining sequence of the pairs

left unit
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In the front page, 25 ring chains, 150 pairs, 300
modules, form this spatial ordering seen in

horizontal projection.
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Crystal of thropomyosin. The microphotograph is a

projection on a plane of a three-dimensional
reticulum constituted by molecular filaments

connected across and enlarged 200,000 times.

Microphotograph of a double-diamond shaped net

of a muscular fiber.
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The purpose is:

1. to render geometrically determinable the
relations that intercede between the parts that
constitute the module;

2. to consider the aspects of cyclicity, harmonic
growth, to be found in the operations of rotatory
symmetry, executable on the plane, as a function of
the three-dimensional configuration of the module
and its repeatability;

3. to construct chains which are constituted by pairs
of modules, in which one of the components is the
specular image of the other (modular pair:
symmetric and enantiomorphic);

4. to consider the tetrahedron, the cube, the
octahedron, the dodecahedron, the icosahedron
and all the various families of polihedrons as form-
cells determined by foldings, along precise
structuring itineraries of chains of modules, ordered
in linear sequences;

5. to make visible the form of the itineraries that the
modules determine while changing position in
relation to the transformability of the system to
which they belong;

6. to research, among the structuring itineraries of
the various transformable modular systems, those
which are most economical, in the advent of the
possibility of using, through these, electric,
magnetic and mechanical forces;

7. to investigate the aspects that differenciate a
tranformable system from the other, in terms of
plane and spatial geometry;

8. to point out that the number, the type of modules
and the order in which they are laid out, represent
that which singularly characterizes the various
modular systems;

9. to research new combinatory and structural
components, organizing data regarding spatial
orderings of modular systems, which can be
transformed into mathematical models for the
programming of the computer;

10. moreover, we believe that the manual
intervention (to which the time component is
related) is the fundamental and simplest way to act
in a tranformable sense on every system of
modules articulated in a chain.

In every chain exists a constant relationship
between the number of modules and the number of
connections. If we raise the first, we must raise the
second, the degree of flexibility within the modular
system grows, while in the case of models of larger
dimensions, the coordination of manual
interventions becomes more complex and the
“disorder” related to the combinatory game of the
modules is also larger. An example could be a
series of chains of various form constituted by
modules in periodic progression (96, 768, 6144...
48, 384, 3072... 192, 1536, 12288... etc.). In any
case, no matter what the dimensions are, we can
say that in a transformable system, the manual or
otherwise intervention determines various and
different adjustments of the modules in many
spatial directions: with the term stereomodular we
can define the organization of that model in which
its modular units synchronously cooperate to the
pluri-dimensional transformability of the system
which they constitute.
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THE DIMENSIONS OF THE FIVE ]
REGULAR POLYHEDRA N

i. Construct the rectangular triangle 1Won which ! \
the fundamental dimensions of the five Plato ,
polyhedra will be defined, .

2. with a straight line, connect the vertex b with the
median point of the hypotenuse d,

3. trace the straight line d-e (median point of the
cathetus a-b),

@
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4. describe the semi-circle of ratio e-x (half of e-d),

5. trace the straight lines i-d, h-d,

6. a-l, b-n,
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I

AB = side of the equilateral triangle.

AD = height-median of the equilateral triangle.

ED = heigth between two edges of the
tetrahedron.

AF = height of the tetrahedron (vertex-center of
the face).

AB = height, side, edge of the cube.

AC = diagonal, height between two vertexes of the
cube. :

AO + AO = diagonal of the square.

AB = side, edge of the octahedron.

AO + AO = height between two vertexes of the
octahedron.

EOQ + EO = height between two edges of the
octahedron.

AB = side of the dodecahedron.

AX + AX + MX + MX = height between two
faces of the dodecahedron (between the centers of
two faces). o
AG + AG = height between the centers of two
faces of the dodecahedron with side H — B.

ED + ED + ID + ID = height between two
vertexes of the dodecahedron.

AB = side, edge of the icosahedron.

AS + AS = height between the centers of two
opposite faces of the icosahedron.

AG + AG = height between two vertexes of the
icosahedron.

HB = ratio (vertex-center) of the regular pentagon
{face of the dodecahedron).
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PAIRS OF PERIODIC MODULES
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Five pairs of tetrahedral modules in which each unit
is the enantiomorphous or antipode of the other.
Joined together they form folding chains that can
be exactly contained in the five polyhedral cells.
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Tetrahedron

A module is constituted by 4 rectangular triangles
(2A + 2b}; a pair, by 8 specular rectangular
triangles (two tetrahedrons); 4 specular modules
are contained in the tetrahedral cell; 8 rectangutar
triangles A configurate the external surface of the
tetrahedral cell; 8 rectangular triangles b form the
internal surface.

Cube

A module is constituted by 4 rectangular triangles
(2B + 2b);

a pair, by 8 specular rectangular triangles (2
tetrahedrons);

6 specular modules are contained in the cubic cell;
12 rectangular triangles B configurate the external
surface of the cell;

12 rectangular triangles b form the internal surface.
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Octahedron

A module is constituted by 4 rectangular triangles
(1A +1b + 2B);

A pair of modules is constituted by 8 specular
rectangular triangles (2 tetrahedrons);

16 specular modules are contained in the
octahedral cell;

16 rectangular triangles A constitute the external
surface of the cell;

32 rectangular triangles B of which 16 of B plus
16 triangles b , form the internal surface.

106

Dodecahedron

A module is constituted by 4 rectangular triangles
(1C + 1C + 1C2 + 1C3);

a pair is constituted by 8 specular rectangular
triangles (2 tetrahedrons); 120 rectangular triangles
C form the external surface of the cell;

360 rectangular triangles ¢, ¢2, ¢3, form the
internal surface.



Dodecahedral chain constituted by 120 specular
modules: the edge of the dodecahedral cell that
contains this model measures 5 centimeters, the
modutes form a linear sequence whose lenght is
about two and half times the height of an average
person.

107



108



[0}
(@}
st




110






The rectangular triangles constituting the specular
modules can be grouped in a scheme which
distinguishes the types according to dimensional
and angular values, and puts the external in
relation to the internal; this has to do with the
disposition of the modules in the cells and therefore
with the internal and external constitution of the
cells themselves. On the vertexes of this triangular
diagram we find the rectangular triangles that
constitute the total external surface of the five cells.
The rectangular triangle A is external face of
modules constituting three cells: the tetrahedral, the
octahedral, the icosahedral. The rectangular
triangle B is the external face of the modules that
are contained in the cubic cell.

The rectangular triangle C is the external face of
the modules contained in the dodecahedral cell.

icosahedron The rectangular triangles that form the internal

A module is constituted by 4 rectangular triangles surface of the various modules and therefore of the
(1A + 1d + 1c + 1c3); cells present themselves in the following

a pair by 8 rectangular triangles A which are relationship with the 3 rectangular triangles of
specular (2 tetrahedrons): external surface: B, b, d, C2, C3, link with A in the
120 triangles A form the external surface of the cell; relat{onsh{p of 1:5; m’ C2, C3, hnk. with ,C :

360 rectangular triangles d, ¢, ¢2, ¢3, form the relationship 1:3; b, links to B : relationship: 1:1.
internal surface. B is the only rectangular triangle which is present

both in the outside (cube) and in the inside
(octahedron) of a cell.

N
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- By sectioning in two, four, eight pieces, one
component of each of the five pairs, does not
matter which of the two, we obtain 20 pairs, of
which 13 are analogous to the initial pair. In other
words, three sections, following a determined
branch of the diagram, originate at least two
modules having enantiamorphosous specularity,
that is, they have the form of the two modules that
compose the initial pair and are one eighth of the
volume of the sectioned module. In all five cases,
to produce sub-modular pairs out of the basic pair,
starting from one of the two components, we must
get to the fourth sector of the branched diagram in
which a quartet of pairs or an octet of modules is
being formed. We have therefore a regularity which
is repeated every eight modules, or four pairs of
modules. This periodic recurrence constitutes a
fugue towards an ever-reducing dimensionality,
besides the fact that it establishes a relation
between modules, which, in a scale of the
polyhedral volumes, can assume their own very
precise position and function.

28
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Cube A

The four pairs (8D) are symmetrical with respect to
each other, analog to the basic pair.
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Octahedron

Three pairs (8H) are submodular, with the fourth
pair (8G) we can construct a chain precisely '
foldable in the octahedral cell.
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. Dodecahedron
~ Two pairs (81) are submodular, the pairs 8L, 8H can
occupy hyperspaces of interconnected cells.
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lcosahedron )
Two pairs (81) are submodular, the pairs 8L, 8H can
occupy hyperspaces of interconnected cells.

>
|
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DEFINITION OF THE OPERATION

We can assume that the infinite possibilities of
modulation of a few elementary basic forms, on the
plane and in space, be implicitly related to some
ordinatory principle, regarding their transformation,
development and organization.

The purpose of this work is the research of
fundamental ordinatory components, through which
be possible to regulate, orient, in a logical way and
in a continuity of connections, the tranformation, the
development, the modular organization.

The problem must be approached by starting from
the principal components which are:

A. a base geometrically given, possibly the most
elementary one;

B. the programming of its development; that is how
to determine its transformation and its plane,
spatial, and temporal growth.

A more detailed list of single problems and of the
more relevant operations includes:

1. sectionings of the basic geometric unit;

2. choice of the module or of a pair of modules
produced by the discomposition;

3. symmetry operations on a plane with reticular
structure;

4. cycles of development on the plane, as a
function of the three-dimensional development;

5. three-dimensional development;

6. quantity and modular differenciation:

a. how many modules need to be constructed, of
what type, and why;

b. in what way they have to be utilized and for what
purpose;

7. spatial orderings;

These points examplify a way to constitute a work
plan, articulating a series of successive phases,
starting from the basic unit and arriving to various
degrees of differenciation, structuralization and
modutar variability.

It must also be remembered that:

1. the simplest discomposition of the basic module
is its section in two parts; each one of the two parts
can again be bisected; and so on;

2. each module can be composed of smaller
modules;

3. the role of component can be exchanged with
that of composed and that of composed into
component: in this closed chain a minimum and a
maximum of discompositions are present;

4. discomposition and recomposition are alternable,
as a function of the typology and modular quantity;
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5. the properties of symmetry constitute an
essencial instrument in trying to schematically unify

' the numerous relations which are present between

the basic elementary units, the fold-out
configurations on the plane and in three-dimensional
space, and the systems of articulated modules.

It will also have to be taken into account, as far as
possible, the innumerable factors which in nature
are constitutive of the development of forms and
organisms; the gathered data (scientific information,
direct observations) will be utilized in an analogic
sense in the constructions of models. We will try to
proceed with experimental intent in the formation of
the work plan which will have to present itself as an
instrument objectively usable, which offers
operational variables and which can be modified in
relation to new emerging probiems.
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